czasu.odt

(109 KB) Pobierz

<rate absspeed="-2"/>  <silence msec="800"/>

<rate absspeed="-1"/>

Jeszcze krótsza historia czasu. <silence msec="800"/> <rate absspeed="-2"/> 

Stephen Wu Hawking, <silence msec="400"/>  <rate absspeed="-2"/> Leonard Mlodinow <silence msec="800"/> <rate absspeed="-2"/>

Przedmowa. <silence msec="600"/> <rate absspeed="-2"/>

Tylko dwiema literami angielski tytuł tej książki różni się od tytułu książki opublikowanej w 1988 roku. <rate absspeed="-1"/> Krótka historia czasu przez 237 tygodni nie schodziła z listy bestsellerów londyńskiego „Sunday Timesa". Na każdy sprzedany egzemplarz przypada średnio 750 osób spośród sześciu i pół miliarda mężczyzn, kobiet i dzieci zamieszkujących Ziemię. Był to zadziwiający sukces wydawniczy jak na książkę, która porusza niektóre z najtrudniejszych zagadnień współczesnej fizyki. Lecz owe trudne zagadnienia są zarazem najbardziej intrygujące, ponieważ bezpośrednio dotyczą zasadniczych, fundamentalnych kwestii: Co naprawdę wiemy O wszechświecie? Skąd wiemy to, co wiemy? Jak wszechświat powstał? Jaki będzie jego los? Zarówno Krótka historia czasu, jak i niniejsza książka w znacznej mierze koncentrują się na powyższych pytaniach. <rate absspeed="-1"/>

W ciągu kilkunastu lat, które upłynęły od opublikowania Krótkiej historii czasu, otrzymaliśmy wiele listów z całego świata. Najczęściej powtarzającym się tematem tych listów — niezależnie od wieku, profesji i pochodzenia czytelników — była prośba o nową wersję książki niezmienioną co do treści, lecz wyjaśniającą najważniejsze koncepcje w prostszy, bardziej przystępny sposób. Można by oczekiwać, że taka książka będzie zatytułowana Nieco dłuższa historia czasu, lecz było oczywiste, że niewielu czytelników oczekuje długiej dysertacji na poziomie akademickiego kursu kosmologii. W ten sposób ukształtowało się podejście, w wyniku którego powstała Jeszcze krótsza historia czasu. Utrzymaliśmy, a nawet rozszerzyliśmy w niej zasadniczą zawartość jej poprzedniczki, lecz staraliśmy się także nie powiększyć objętości i zarazem uczynić ją jak najbardziej przystępną. Historia faktycznie jest „krótsza", ponieważ pominęliśmy niektóre bardziej techniczne fragmenty, co jednak skompensowaliśmy wnikliwszym potraktowaniem materiału, który stanowi w istocie najważniejszą i zasadniczą treść książki.

Skorzystaliśmy także z okazji i uwzględniliśmy pewne nowe rezultaty teoretyczne oraz wyniki obserwacji. Jeszcze krótsza historia czasu opisuje najnowsze osiągnięcia w poszukiwaniu kompletnej, jednolitej (zunifikowanej) teorii wszystkich sił natury. W szczególności dotyczy to postępów w teorii strun, a także pewnych dualizmów, czyli podobieństw pozornie różnych teorii fizycznych, które wydają się wskazywać, że zunifikowana teoria naprawdę istnieje. Książka zawiera także pewne ważne nowe wyniki obserwacyjne poczynione między innymi przez satelitę COBE (COsmic Background Explorer — Kosmiczny Badacz Tła) oraz Kosmiczny Teleskop Hubble'a.

Czterdzieści lat temu Richard Feynman powiedział: „Mamy szczęście, ponieważ żyjemy w epoce, w której wciąż dokonuje się odkryć. To tak jak z odkryciami geograficznymi — Amerykę można odkryć tylko raz. Żyjemy w epoce, w której dokonuje się odkryć dotyczących fundamentalnych praw natury". Dzisiaj jesteśmy bliżsi zrozumienia natury wszechświata niż w jakiejkolwiek wcześniejszej epoce. Naszym celem przy pisaniu tej książki było podzielenie się z czytelnikami tym podnieceniem, jakie towarzyszy odkrywaniu owych praw, a także ukazanie obrazu rzeczywistości, jaki się z nich wyłania. <silence msec="1200"/> <rate absspeed="-2"/>

1. <silence msec="550"/> <rate absspeed="-2"/>MYŚLENIE O WSZECHŚWIECIE. <silence msec="800"/> <rate absspeed="-1"/>

żyjemy w przedziwnym i zarazem cudownym świecie. Potrzeba niezwykłej wyobraźni, aby pojąć jego wiek i rozmiary oraz docenić jego grozę i piękno. Wydaje się, że w tym ogromnym kosmosie człowiek zajmuje dość niepozorne miejsce, lecz mimo to próbuje znaleźć w nim sens i zrozumieć swoją rolę. Jakiś czas temu pewien znany uczony (podobno był to Bertrand Russell) w trakcie publicznego wykładu opisywał, w jaki sposób Ziemia krąży wokół Słońca, a z kolei Słońce krąży wokół centrum ogromnego układu gwiazd, który nazywamy Galaktyką. Pod koniec wykładu pewna starsza pani wstała i rzekła: „Opowiada pan głupstwa. W rzeczywistości świat jest płaski i opiera się na grzbiecie gigantycznego żółwia". Uczony z uśmiechem odpowiedział: „A na czym spoczywa żółw?". Starsza pani odparła: „Jesteś sprytny, młody człowieku, bardzo sprytny. Ale tam są same żółwie, aż do samego dołu!".

Obecnie większość ludzi zapewne wyśmiałaby obraz wszechświata w postaci nieskończonej wieży z żółwi. Na jakiej podstawie uważamy, że wiemy lepiej? Zapomnijmy na chwilę o wszystkim, co wiemy — albo sądzimy, że wiemy — na temat kosmosu, i spójrzmy na nocne niebo. Czym są te wszystkie światełka? Czy nie są raczej maleńkimi ogniskami? Dość trudno wyobrazić sobie ich prawdziwą naturę, ponieważ odbiega ona od wszystkiego, co może nam podpowiedzieć nasze codzienne doświadczenie. Jeżeli często oglądamy gwiazdy, to prawdopodobnie widzieliśmy ulotne światło unoszące się o świcie lub o zmierzchu nad horyzontem. To Merkury, planeta, lecz jakże odmienna od naszej planety — Ziemi. Jeden dzień na Merkurym trwa dwie trzecie jego planetarnego roku. Temperatura na jego powierzchni przekracza 400 stopni Celsjusza, gdy świeci Słońce, lecz spada niemal do -200 stopni Celsjusza w środku nocy. Ale różnice między Ziemią i Merkurym to fraszka w porównaniu z przeciętną gwiazdą, która stanowi potężny tygiel spalający w każdej sekundzie miliony ton materii, a temperatury w jej rdzeniu sięgają dziesiątek milionów stopni.

Kolejną rzeczą, którą trudno sobie wyobrazić, są odległości planet i gwiazd. Starożytni Chińczycy budowali kamienne wieże, aby oglądać gwiazdy z bliższej odległości. Dość naturalne wydaje się przekonanie, że gwiazdy są blisko, znacznie bliżej niż w rzeczywistości. W naszym codziennym życiu nie ma niczego, co pozwoliłoby nam doświadczyć takich odległości, z jakimi mamy do czynienia w kosmosie. Są one tak olbrzymie, że nie ma sensu mierzenie ich w stopach, milach, metrach i kilometrach, których używamy do mierzenia większości odległości na Ziemi. W przestrzeni jednostką odległości jest rok świetlny, czyli dystans, do którego przebycia światło potrzebuje jednego roku. W ciągu jednej sekundy promień światła pokonuje 300000 kilometrów, więc rok świetlny to naprawdę duża odległość. Najbliższą gwiazdą, nie licząc naszego Słońca, jest Proxima Centauri (znana także jako Alfa Centauri C), która znajduje się w odległości około czterech lat świetlnych od nas. Nawet najszybsze statki kosmiczne, które dziś potrafimy zaprojektować, potrzebowałyby około dziesięciu tysięcy lat na pokonanie takiej odległości.

Starożytni usilnie próbowali zrozumieć wszechświat, lecz nie dysponowali narzędziami, które obecnie są do naszej dyspozycji: matematyką (i nauką w ogólności), komputerami ani teleskopami. Za pomocą tych i innych narzędzi naukowcy połączyli w jedną całość znaczną ilość wiedzy na temat przestrzeni. Ale co my właściwie wiemy o wszechświecie i skąd to wiemy? Jak powstał wszechświat? Dokąd zmierza? Czy miał początek, a jeżeli tak, to co było wcześniej? Czym jest czas? Czy kiedykolwiek się skończy? Czy można poruszać się wstecz w czasie? Najnowsze osiągnięcia fizyki, co najmniej w części uzyskane dzięki nowym technologiom, przynoszą odpowiedzi na niektóre z tych odwiecznych pytań. Któregoś dnia odpowiedzi te staną się równie oczywiste jak krążenie Ziemi wokół Słońca — lub równie niedorzeczne jak wieża żółwi. Czas (czymkolwiek jest) pokaże. <silence msec="1200"/> <rate absspeed="-2"/>

2. <silence msec="550"/> <rate absspeed="-2"/>NASZ, EWOLUUJĄCY OBRAZ WSZECHŚWIATA. <silence msec="800"/> <rate absspeed="-1"/>

Wprawdzie jeszcze w czasach Kolumba sporo ludzi sądziło, że Ziemia jest płaska (nawet dzisiaj znalazłoby się kilka takich osób), lecz korzenie nowoczesnej astronomii sięgają starożytnych Greków. Około 340 roku p.n.e. grecki filozof Arystoteles napisał traktat zatytułowany „o niebie”, w którym wysunął wiele istotnych argumentów na rzecz tezy, iż Ziemia nie jest płaska, lecz jest kulą.

Jeden z argumentów był oparty na zaćmieniach Księżyca. Arystoteles uświadomił sobie, że zaćmienia są spowodowane przez Ziemię. Gdy Ziemia znajdzie się między Księżycem i Słońcem, Księżyc trafia w cień Ziemi - w wyniku czego następuje zaćmienie. Arystoteles zauważył, że widoczny na Księżycu cień Ziemi jest zawsze okrągły. Takiego kształtu należałoby oczekiwać, gdyby Ziemia była kulą, lecz nie wtedy, gdyby była płaskim dyskiem. Gdyby Ziemia była płaskim dyskiem, jej cień byłby okrągły tylko wtedy, gdy Słońce znajdowałoby się dokładnie pod środkiem dysku. W innych położeniach cień byłby wydłużony — miałby kształt elipsy (elipsa jest wydłużonym okręgiem).

Grecy odkryli także inne argumenty na rzecz kulistej Ziemi. Gdyby Ziemia była płaska, statek na morzu pojawiałby się na horyzoncie jako maleńka, pozbawiona widocznych szczegółów kropka. W miarę zbliżania się statku szczegóły — takie jak żagle i kadłub — stawałyby się stopniowo coraz lepiej widoczne. W rzeczywistości odbywa się to inaczej. Gdy statek pojawia się na horyzoncie, najpierw widać żagle, a kadłub staje się widoczny znacznie później. Fakt, iż najpierw zza horyzontu wyłaniają się maszty, stanowi dowód, że Ziemia jest kulą.

Grecy bardzo wiele uwagi poświęcali obserwacjom nieba. W czasach Arystotelesa istniały zapisy prowadzonych od wielu setek lat obserwacji dotyczących ruchów świateł na nocnym niebie. Zwrócono uwagę na to, że niemal wszystkie spośród tysięcy widocznych świateł poruszają się wspólnie, jednakowym ruchem na niebie, lecz pięć z nich (nie licząc Księżyca) niekiedy wyłamuje się i zbacza z regularnej ścieżki prowadzącej ze wschodu na zachód, a czasem nawet zawraca, wykonując pętlę. Światła owe nazwano planetami, od greckiego słowa oznaczającego wędrowca. Grecy zaobserwowali pięć planet, ponieważ tylko pięć z nich widać gołym okiem z Ziemi: Merkurego, Wenus, Marsa, Jowisza i Saturna. Dzisiaj wiemy, dlaczego planety poruszają się na niebie wzdłuż takich niezwykłych trajektorii: gwiazdy prawie się nie poruszają względem naszego Układu Słonecznego, natomiast planety krążą wokół Słońca, więc ich ruch względem Ziemi jest znacznie bardziej skomplikowany niż ruchy odległych gwiazd.

Arystoteles sądził, że Ziemia jest nieruchoma, natomiast Słońce, Księżyc, planety i gwiazdy poruszają się wzdłuż kołowych orbit wokół Ziemi. Opierał się na mistycznych założeniach, że Ziemia stanowi centrum wszechświata, a ruch kołowy to najdoskonalsza forma ruchu. W następnym stuleciu inny Grek, Ptolemeusz, przekształcił te idee w kompletny model nieba. Ptolemeusz podchodził do swoich studiów z prawdziwą pasją i zaangażowaniem, czego dowodzi przypisywany mu epigramat: „Kiedy śledzę obiegi gwiazd, tudzież powroty ich, już nie dotykam ziemi".

W modelu Ptolemeusza Ziemię otaczało osiem koncentrycznych, wirujących sfer, dla których Ziemia stanowiła wspólny środek. Każda kolejna sfera była trochę większa od poprzedniej, na podobieństwo rosyjskich babuszek. Nigdy nie zostało wyraźnie powiedziane, co znajduje się poza ostatnią sferą, w każdym razie nie była to część obserwowalnego wszechświata. Sfera położona najbardziej na zewnątrz stanowiła zatem pewnego rodzaju granicę lub „pojemnik" na wszechświat. Gwiazdy zajmowały ustalone miejsca na tej sferze i przemieszczały się na niebie wraz z nią, zachowując niezmienione wzajemne odległości i niezmienione położenia względem siebie, dokładnie tak, jak obserwujemy. Wewnętrzne sfery zawierały planety. Te ostatnie nie były jednak sztywno przymocowane do swoich sfer, tak jak gwiazdy, lecz poruszały się w obrębie swoich sfer wzdłuż małych okręgów zwanych epicyklami. Wirowanie sfer w połączeniu z krążeniem planet po epicyklach powodowało, że ruchy planet względem Ziemi były dość skomplikowane. W ten sposób Ptolemeusz był w stanie uwzględnić fakt, że obserwowane trajektorie planet są znacznie bardziej złożone niż prosty ruch w poprzek nieba.

Model Ptolemeusza stanowił całkiem dokładny system pozwalający na dość precyzyjne przewidywania położeń ciał niebieskich, lecz Ptolemeusz musiał między innymi przyjąć założenie, że Księżyc poruszał się w taki sposób, iż jego odległość od Ziemi zmieniała się w dość znacznym zakresie — w najbliższym położeniu znajdował się dwukrotnie bliżej niż w najdalszym. Prowadziło to do wniosku, że powinien wtedy być dwukrotnie większy! Ptolemeusz zdawał sobie sprawę z tej wady, lecz jego model został mimo to powszechnie przyjęty (aczkolwiek nie stał się uniwersalnym modelem zaakceptowanym przez wszystkich). Został uznany przez Kościół za oficjalny, zgodny z Pismem Świętym obraz wszechświata, między innymi dlatego, że poza sferą gwiazd stałych zostawiał mnóstwo miejsca na niebo i piekło.

Inny model został zaproponowany w 1514 roku przez polskiego kanonika, Mikołaja Kopernika (początkowo, zapewne w obawie przed posądzeniem o herezję, Kopernik rozpowszechniał swój model anonimowo). Wysunął on rewolucyjną ideę, zgodnie z którą nie wszystkie ciała niebieskie muszą krążyć wokół Ziemi. Koncepcja Kopernika polegała na tym, że Słońce jest nieruchome i stanowi centrum Układu Słonecznego, a Ziemia i planety krążą wokół Słońca wzdłuż kołowych orbit. Podobnie jak u Ptolemeusza, model Kopernika działał poprawnie, lecz nie był idealnie zgodny z obserwacjami. Okazał się jednak znacznie prostszy od koncepcji Ptolemeusza, więc można było oczekiwać, że zostanie szybko przyjęty. Upłynęło jednak niemal sto lat, zanim idea Kopernika została potraktowana poważnie. Dwaj astronomowie — Niemiec Johannes Kepler oraz Włoch Galileo Galilei — zaczęli publicznie popierać teorię Kopernika.

W 1609 roku Galileusz zaczął obserwacje nieba za pomocą teleskopu, który został dopiero co wynaleziony. Gdy spojrzał na Jowisza, przekonał się, że towarzyszy mu kilka małych satelitów — księżyców, które krążą wokół Jowisza, a nie wokół Ziemi. Oznaczało to, że nie wszystkie ciała niebieskie muszą krążyć bezpośrednio wokół Ziemi, jak uważali Arystoteles i Ptolemeusz. W tym samym czasie Kepler udoskonalił teorię Kopernika, sugerując, że planety krążą nie po kołowych, lecz po eliptycznych orbitach.

Wraz z tą zmianą przewidywania teorii zaczęły się zgadzać z obserwacjami. Odkrycia te zadały śmiertelne ciosy modelowi Ptolemeusza.

Eliptyczne orbity poprawiły model Kopernika, lecz dla Keplera stanowiły one jedynie prowizoryczną hipotezę, ponieważ kierował się on ugruntowanymi ideami na temat natury, które nie były oparte na żadnych obserwacjach: podobnie jak Arystoteles, Kepler po prostu wierzył, że elipsy są mniej doskonałe niż okręgi. Koncepcja ruchu planet wzdłuż tak niedoskonałych orbit wydawała mu się na tyle brzydka, że nie mogła stanowić ostatecznej prawdy. Keplera niepokoiło także to, że nie potrafił pogodzić eliptycznych orbit z ideą przyciągania planet przez siły magnetyczne Słońca. Koncepcja sił magnetycznych była wprawdzie błędna, lecz należy zwrócić uwagę, że Kepler pierwszy zdał sobie sprawę, iż muszą istnieć siły odpowiedzialne za ruchy planet. Poprawne wyjaśnienie, dlaczego planety krążą wokół Słońca, pojawiło się znacznie później, w 1687 roku, gdy sir Isaac Newton opublikował swoje Philosophiae Naturalis Principia Matbematica, prawdopodobnie najważniejsze dzieło w historii nauk fizycznych.

Newton sformułował w Principiach prawo, które mówi, że każde ciało w naturalny sposób pozostaje w spoczynku tak długo, dopóki nie zadziała na nie siła. Opisał także, w jaki sposób działanie siły zmusza ciało do ruchu lub zmienia jego sposób poruszania się. Dlaczego zatem planety poruszają się wokół Słońca po elipsach? Newton stwierdził, że odpowiedzialna za to jest określona siła i że jest to ta sama siła, która powoduje, że gdy się jakieś ciało upuści, spada ono na ziemię, a nie pozostaje w spoczynku. Nazwał tę siłę grawitacją (przed Newtonem słowo „grawitacja" oznaczało albo poważny nastrój, albo poważny ciężar). Wynalazł także matematyczne narzędzia, które pozwalają liczbowo określić, w jaki sposób ciała reagują, gdy działa na nie jakaś siła, na przykład grawitacja. Rozwiązał wynikające ze swoich praw równania i pokazał, że wskutek grawitacji Słońca Ziemia i inne planety powinny poruszać się po elipsach — dokładnie tak, jak przewidział Kepler! Newton stwierdził, że jego prawa dotyczą wszystkich obiektów w całym wszechświecie, od spadających jabłek po gwiazdy i planety. Po raz pierwszy w historii trajektorie planet zostały wyjaśnione w kategoriach praw, które decydują także o ruchach ciał na Ziemi. Był to początek zarówno nowoczesnej fizyki, jak i nowoczesnej astronomii.

Porzuciwszy koncepcję sfer Ptolemeusza, astronomowie nie mieli już powodów do zakładania, że wszechświat posiada naturalną granicę — zewnętrzną sferę. Co więcej, ponieważ nie obserwowali żadnych ruchów gwiazd, oprócz dobowej rotacji wywołanej wirowym ruchem Ziemi wokół własnej osi, naturalne wydawało się założenie, że gwiazdy są takimi samymi obiektami jak Słońce, lecz położonymi znacznie dalej. W ten sposób porzuciliśmy nie tylko ideę, że Ziemia jest środkiem wszechświata, lecz nawet nasze Słońce, być może wraz z całym Układem Słonecznym, przestało być wyjątkowym obiektem w kosmosie. Była to głęboka, fundamentalna zmiana postrzegania wszechświata, która zapoczątkowała nowoczesną naukę. <silence msec="1200"/> <rate absspeed="-2"/>

3. <silence msec="550"/> <rate absspeed="-2"/> NATURA TEORII NAUKOWEJ <silence msec="600"/> <rate absspeed="-1"/>

rozważanie natury wszechświata oraz rozważanie takich kwestii jak jego początek i koniec wymaga jasnego, wyraźnego zdefiniowania, czym jest teoria naukowa. Przyjmiemy nieco uproszczony pogląd, zgodnie z którym teoria jest modelem wszechświata, lub jego części, wraz z zestawem reguł, które określają związki między wielkościami obserwowanymi w przyrodzie a wielkościami opisywanymi przez model. Teoria stanowi byt istniejący wyłącznie w umyśle człowieka — nie istnieje w żadnej innej rzeczywistości (cokolwiek by to miało znaczyć). Teoria jest dobra, jeżeli spełnia dwa warunki. Powinna poprawnie i dokładnie opisywać dużą klasę obserwacji na podstawie modelu zawierającego tylko kilka arbitralnych parametrów oraz umożliwiać ilościowe przewidywania dotyczące rezultatów przyszłych obserwacji. Dla przykładu, Arystoteles wierzył w teorię Empedoklesa, zgodnie z którą wszystko jest zrobione z czterech elementów: ziemi, powietrza, ognia i wody. Teoria miała dostatecznie proste podstawy, lecz nie pozwalała formułować żadnych definitywnych przewidywań. Teoria Newtona jest oparta na jeszcze prostszym modelu, w którym ciała przyciągają się z siłą proporcjonalną do wielkości zwanej masą oraz odwrotnie proporcjonalną do kwadratu odległości między nimi, lecz pozwala przewidywać ruchy Słońca, Księżyca oraz planet z bardzo dużą dokładnością.

Każda teoria fizyczna stanowi prowizoryczną konstrukcję w tym sensie, że jest tylko hipotezą — nie da się jej udowodnić. Niezależnie od liczby eksperymentów, których rezultaty są zgodne z jakąś teorią, nigdy nie mamy pewności, czy wynik następnego eksperymentu nie będzie z nią sprzeczny. Z drugiej strony, aby teorię obalić, wystarczy jedna obserwacja lub doświadczenie, którego wynik jest sprzeczny z przewidywaniami teorii. Jak stwierdził filozof Karl Popper, dobra teoria powinna dawać wiele przewidywań, które powinny w zasadzie być weryfikowalne lub falsyfikowalne dzięki wynikom obserwacji. Za każdym razem, gdy nowe eksperymenty dają wyniki zgodne z przewidywaniami, teoria przeżywa, a nasze zaufanie do niej wzrasta; jeżeli jednak kiedykolwiek pojawi się wynik sprzeczny z teorią, musimy ją porzucić lub zmodyfikować. W każdym razie taka powinna być kolej rzeczy, aczkolwiek zawsze można zakwestionować kompetencje osoby wykonującej obserwacje.

W praktyce nowa teoria często stanowi rozszerzenie poprzedniej. Na przykład bardzo precyzyjne obserwacje Merkurego wykazały niewielkie różnice między parametrami jego ruchu wokół Słońca a przewidywaniami teorii grawitacji Newtona. Ogólna teoria względności Einsteina przewidywała nieco odmienny ruch planet niż teoria Newtona. To, że przewidywania Einsteina zgadzały się z obserwacjami, a Newtona nie, było jednym z kluczowych dowodów na rzecz poprawności nowej teorii. Jednakże nadal stosujemy teorię Newtona w większości praktycznych sytuacji, ponieważ w warunkach, z którymi normalnie mamy do czynienia, jej przewidywania bardzo mało się różnią od przewidywań ogólnej teorii względności (teoria Newtona ma także tę przewagę, że jest znacznie prostsza niż teoria Einsteina).

Ostatecznym celem nauki jest pojedyncza teoria, która będzie opisywać cały wszechświat. Wydaje się, że większość naukowców stosuje podejście, w którym problem jest podzielony na dwa zagadnienia. Z jednej strony mamy prawa, które mówią, w jaki sposób wszechświat zmienia się w czasie (jeżeli wiemy, jak wszechświat wygląda w pewnym momencie, to prawa te mówią, jak będzie wyglądał w dowolnym późniejszym momencie). Z drugiej strony mamy do czynienia z kwestią początkowego stanu wszechświata. Niektórzy sądzą, że nauka powinna się zajmować tylko pierwszym z powyższych dwóch zagadnień, a kwestię stanu początkowego traktują tak, jakby stanowiła przedmiot metafizyki lub religii. Ich zdaniem Bóg, jako istota wszechmocna, mógł zacząć wszechświat tak, jak chciał. Być może, lecz w takim przypadku Bóg mógł także spowodować, aby wszechświat rozwijał się w całkowicie dowolny sposób. Wydaje się jednak, że Bóg wybrał bardzo regularny sposób ewolucji wszechświata, zgodny w pewnymi prawami. Równie słuszne wydaje się zatem założenie, że istnieją także prawa rządzące stanem początkowym wszechświata. <rate absspeed="0"/>

Okazuje się, że bardzo trudno jest stworzyć teorię, która opisywałaby wszechświat jako całość. Rozbiliśmy więc problem na części i wynaleźliśmy kilka cząstkowych teorii. Każda z nich opisuje i przewiduje pewną ograniczoną klasę obserwacji, pomijając inne wielkości lub przedstawiając je w postaci kilku prostych liczb. Być może takie podejście jest całkowicie błędne. Jeżeli wszystko we wszechświecie zależy w fundamentalny sposób od wszystkiego innego, to Znalezienie pełnego rozwiązania przez badanie cząstkowych, odizolowanych od całości problemów może się okazać niemożliwe. Lecz w taki sposób robiliśmy postępy w przeszłości. Klasyczny przykład stanowi ponownie teoria grawitacji Newtona, która mówi, że siła grawitacji między dwoma ciałami zależy tylko od jednej liczby związanej z każdym z nich — masy — i jest niezależna od innych parametrów obu ciał. Dlatego do obliczania orbit planet nie potrzebujemy teorii opisującej strukturę oraz budowę Słońca.

Obecnie naukowcy budują modele wszechświata za pomocą dwóch podstawowych teorii — ogólnej teorii względności oraz mechaniki kwantowej — które stanowią wielkie intelektualne osiągnięcia pierwszej połowy dwudziestego wieku. Ogólna teoria względności opisuje siłę grawitacji oraz wielkoskalową strukturę wszechświata, czyli strukturę w skali sięgającej od zaledwie kilku kilometrów aż do milionów milionów milionów milionów (1 z dwudziestoma czterema zerami) kilometrów, czyli rozmiarów obserwowalnego wszechświata. Z drugiej strony mamy mechanikę kwantową, która dotyczy zjawisk w ekstremalnie małych skalach, takich jak milionowa z milionowej części centymetra. Te dwie teorie nie są, niestety, wzajemnie spójne i nie mogą być obie poprawne. Jednym z głównych celów współczesnej fizyki, i zarazem jednym z głównych tematów tej książki, jest poszukiwanie nowej, ogólniejszej teorii — kwantowej teorii grawitacji — która obejmowałaby obie obowiązujące dziś teorie. Nie mamy jeszcze takiej teorii i być może jeszcze długo nie będziemy jej mieć, lecz znamy już wiele cech oraz warunków, które musi ona spełniać. Jak zobaczymy w dalszych rozdziałach, wiemy także całkiem sporo na temat przewidywań oraz wniosków, które muszą wynikać z kwantowej teorii grawitacji.

Jeżeli założymy, że wszechświat nie zachowuje się w sposób arbitralny, lecz rządzą nim określone prawa, to musimy ostatecznie dojść do wniosku, że cząstkowe teorie będą musiały połączyć się w kompletną, jednolitą teorię, która będzie opisywać wszystko we wszechświecie. W poszukiwaniach takiej teorii kryje się jednak pewien fundamentalny paradoks. Sformułowane powyżej idee dotyczące teorii naukowych zakładają, że jesteśmy racjonalnymi istotami, które mogą obserwować wszechświat oraz wyciągać logiczne wnioski na podstawie tego, co widzą. W takim razie rozsądne wydaje się również przypuszczenie, że robimy postępy i zbliżamy się ku odkryciu praw, które rządzą naszym wszechświatem. Jeżeli jednak taka teoria rzeczywiście istnieje, to powinna ona także obejmować nasze działania — czyli sama teoria powinna określać wynik naszych poszukiwań! Czy powinna zatem bezwarunkowo przesądzać, że na podstawie dostępnych obserwacji dojdziemy do właściwych wniosków? Równie dobrze może się przecież okazać, że dojdziemy do błędnych konkluzji. A może nie dojdziemy do żadnej ostatecznej konkluzji?

Jedyne rozwiązanie, jakie potrafimy zaproponować w odpowiedzi na tak postawiony problem, jest oparte na Darwinowskiej zasadzie doboru naturalnego. Jego podstawę stanowi idea, zgodnie z którą w każdej populacji samoreprodukujących się organizmów istnieją wariacje materiału genetycznego oraz różnice wychowania, które powodują, że niektóre osobniki są bardziej zdolne do wyciągania właściwych wniosków na temat otaczającego ich świata oraz do odpowiedniego działania. Szanse przeżycia tych osobników oraz ich reprodukcji będą zatem odpowiednio większe, więc ich wzorce zachowania oraz myślenia powinny dominować. Mieliśmy wiele dowodów w przeszłości, że inteligencja oraz odkrycia naukowe stanowiły istotny czynnik zwiększający szanse przetrwania. Nie jest całkiem oczywiste, czy nadal tak będzie — równie dobrze może się okazać, że nasze odkrycia naukowe spowodują naszą zagładę. Nawet jeżeli tak się nie stanie, kompletna, jednolita teoria niekoniecznie musi spowodować istotną zmianę naszych szans przetrwania. Zakładając jednak, że wszechświat ewoluuje w regularny sposób, możemy oczekiwać, że zdolności do rozumowania, którymi obdarzył nas dobór naturalny, będą także przydatne w poszukiwaniach kompletnej, jednolitej teorii i nie doprowadzą nas do błędnych wniosków.

Cząstkowe teorie, którymi obecnie dysponujemy, umożliwiają dokładne przewidywania niemal we wszystkich sytuacjach, oprócz tych najbardziej ekstremalnych, więc wydaje się, że trudno znaleźć praktyczne uzasadnienia dla poszukiwań ostatecznej teorii wszechświata. (Warto jednak zauważyć, że podobny argument mógłby w swoim czasie zostać użyty przeciwko teorii względności oraz mechanice kwantowej, a teorie te dały nam zarówno energię jądrową, jak i rewolucję w mikroelektronice). Odkrycie kompletnej, jednolitej teorii nie musi wcale ułatwić przetrwania naszego gatunku. Nie musi nawet wpłynąć na zmianę naszego stylu życia. Lecz od zarania cywilizacji ludzie nie zadowalali się postrzeganiem wszechświata jako zbioru niezwiązanych ze sobą i niewytłumaczalnych zjawisk. Zawsze dążyliśmy do zrozumienia porządku ukrytego pod powierzchnią zjawisk. Także i dzisiaj chcemy wiedzieć, dlaczego tu jesteśmy i skąd pochodzimy. Głód wiedzy to wystarczające uzasadnienie naszych nieustannych poszukiwań. A naszym celem jest ni mniej, ni więcej- tylko kompletny opis wszechświata, w którym żyjemy. <silence msec="1200"/> <rate absspeed="-2"/>

 

 

  1. <silence msec="550"/> <rate absspeed="-2"/> WSZECHŚWIAT NEWTONA. <silence msec="600"/>

<rate absspeed="-1"/> nasze obecne idee dotyczące ruchów ciał wywodzą się od Galileusza i Newtona. Przed nimi obowiązywały koncepcje Arystotelesa, który stwierdził, że naturalnym stanem ciała jest stan spoczynku, natomiast ruch wymaga działania siły lub impulsu. Wynikało z nich także, iż cięższe ciało powinno spadać na ziemię szybciej niż lekkie, ponieważ działająca na nie siła przyciągania jest większa w przypadku cięższego ciała. Zgodnie z obowiązującą od czasów Arystotelesa tradycją prawa rządzące wszechświatem można odkryć wyłącznie przez rozumowanie, bez potrzeby odwoływania się do obserwacji, więc przed Galileuszem nikt nie zawracał sobie głowy sprawdzaniem, czy ciała o różnych masach faktycznie spadają z różnymi prędkościami. Według powszechnie obowiązującej tradycji Galileusz udowodnił, że pogląd Arystotelesa jest fałszywy, zrzucając kule o różnej masie z krzywej wieży w Pizie. Ta historia jest niemal na pewno fałszywa, lecz Galileusz rzeczywiście wykonał równoważny eksperyment — badał staczanie się kul z gładkiej pochylni. Sytuacja jest podobna do pionowego spadania ciężkich kul, lecz obserwacje stają się łatwiejsze, ponieważ prędkości ciał są mniejsze. Pomiary Galileusza wskazywały, że każde ciało zwiększa swoją prędkość w takim samym stopniu, niezależnie od swej masy. Jeżeli na przykład puścimy kulę na pochylni, która obniża się o jeden metr na każde dziesięć metrów długości, kula będzie się staczać z prędkością około jednego metra na sekundę po jednej sekundzie, z prędkością dwóch metrów na sekundę po dwóch sekundach i tak dalej niezależnie od masy kuli. Kula wykonana z ołowiu będzie oczywiście spadać z wieży szybciej niż ptasie piórko, ale tylko z powodu oporu powietrza. Jeżeli zrzucimy dwa ciała, którym powietrze nie stawia znacznego oporu, na przykład dwie ołowiane kule o różnej masie, będą spadać z jednakową prędkością (za chwilę zobaczymy, dlaczego tak się dzieje). Na Księżycu nie ma atmosfery, której opór mógłby spowalniać spadające ciała, więc astronauta David Scott przeprowadził eksperyment z piórkiem sokoła i geologicznym młotkiem. Okazało się, że spadły w tym samym czasie.  <rate absspeed="0"/>

Pomiary Galileusza wykorzystał Newton jako podstawę swoich praw ruchu. W eksperymentach Galileusza na ciało staczające się wzdłuż pochylni cały czas działa ta sama siła (równa jego ciężarowi), w wyniku czego ciało nieustannie przyspiesza. To dowodzi, że skutkiem działania siły jest zawsze zmiana prędkości ciała, a nie tylko wprawianie go w ruch, jak sądzono uprzednio. Oznacza to także, że gdy na ciało przestaną działać wszelkie siły, ciało będzie się nadal poruszać ruchem prostoliniowym ze stałą prędkością. Ta idea została po raz pierwszy opublikowana w 1687 roku w dziele Principia Mathematica Newtona. Nosi ona nazwę pierwszego prawa Newtona. Drugie prawo mówi o tym, co się dzieje z ciałem, gdy działa na nie jakaś siła. Stwierdza ono, że ciało będzie przyspieszać, czyli zmieniać swą prędkość, w tempie proporcjonalnym do wielkości siły (na przykład pod wpływem dwukrotnie większej siły przyspieszenie będzie dwukrotnie większe). Przyspieszenie będzie tym większe, im mniejsza masa (czyli ilość materii) ciała — taka sama siła działająca na ciało o dwukrotnie większej masie spowoduje o połowę mniejsze przyspieszenie. Znany przykład stanowi samochód — im mocniejszy silnik, tym większe przyspieszenie, lecz im cięższy samochód, tym mniejsze przyspieszenie zapewni mu ten sam silnik.

Oprócz praw ruchu, które opisują, w jaki sposób ciała reagują na działanie sił, teoria Newtona mówi także, w jaki sposób działa jeden określony typ sił — grawitacja. Jak już wspomnieliśmy, teoria ta stwierdza, że każde ciało przyciąga każde inne ciało z siłą, która jest proporcjonalna do mas obu ciał. Tak więc siła przyciągania dwóch ciał podwoi się, jeżeli masa jednego z nich (na przykład ciała A) zostanie podwojona. Dokładnie tego należałoby oczekiwać, ponieważ nowe ciało A można sobie wyobrażać jako złożone z dwóch ciał, każde z początkową masą ciała A. Każde z nich będzie przyciągać ciało B z taką samą siłą, jak oryginalne ciało A. Zatem siła przyciągania będzie dwukrotnie większa po podwojeniu masy ciała. A jeżeli masa jednego z ciał zostanie zwiększona sześciokrotnie albo masa jednego z nich zostanie zwiększona dwukrotnie, a drugiego trzykrotnie, to siła ich wzajemnego przyciągania wzrośnie sześciokrotnie.

 

Możemy się teraz przekonać, dlaczego wszystkie ciała spadają na ziemię w tym samym tempie. Zgodnie z prawem grawitacji Newtona na ciało o dwukrotnie większej masie działa dwukrotnie większa siła grawitacji. Lecz skoro ciało ma dwukrotnie większą masę, jego przyspieszenie — zgodnie z drugim prawem Newtona — będzie odpowiednio mniejsze, o taki sam czynnik równy dwa. Zgodnie z prawami Newtona te dwa efekty wzajemnie się skasują i przyspieszenie będzie takie samo niezależnie od masy ciała.

Prawo grawitacji Newtona mówi także, że im dalej od siebie znajdują się dwa ciała, tym słabsza siła, z jaką na siebie działają. Gwiazda przyciąga planetę z siłą, która jest równa dokładnie jednej czwartej siły, z jaką podobna gwiazda przyciąga podobną planetę położoną o połowę bliżej. Prawo to z wielką dokładnością określa orbity Ziemi, Księżyca oraz planet. Gdyby grawitacyjne oddziaływanie gwiazdy zmieniało się z odległością trochę szybciej lub trochę wolniej niż w rzeczywistości, orbity planet nie byłyby eliptyczne; planety albo spadałyby wzdłuż spirali na Słońce, albo uciekałyby w przestrzeń.

Jedna z zasadniczych różnic między ideami Arystotelesa a Galileusza i Newtona polegała na tym, że Arystoteles wierzył w wyróżniony stan spoczynku, który każde ciało przyjmuje, gdy nie jest popychane przez żadną siłę lub impuls. W szczególności Arystoteles sądził, że Ziemia znajduje się w stanie spoczynku. Z praw Newtona wynika jednak, że nie istnieje wyróżniony standard spoczynku. Można równie dobrze powiedzieć, że ciało A jest w spoczynku, a ciało B porusza się ze stałą prędkością względem ciała A, lub że ciało B jest w spoczynku, a ciało A się porusza. Jeżeli pominiemy na moment wirowanie Ziemi wokół własnej osi oraz jej ruch po orbicie wokół Słońca, możemy stwierdzić, że Ziemia jest w spoczynku, a pociąg na jej powierzchni jedzie na północ z prędkością dziewięćdziesięciu kilometrów na godzinę, lub pociąg jest w spoczynku, a Ziemia porusza się na południe z prędkością dziewięćdziesięciu kilometrów na godzinę. Gdy wykonamy eksperymenty z poruszającymi się ciałami w pociągu, wszystkie prawa Newtona będą nadal spełnione. Rację ma Newton czy Arystoteles i jak można to sprawdzić?

Jeden z możliwych testów wyglądałby następująco: wyobraźmy sobie, że jesteśmy zamknięci w pudle i nie wiemy, czy pudło znajduje się na podłodze pociągu czy na twardej powierzchni Ziemi, która — według Arystotelesa — stanowi standard spoczynku. Czy da się to sprawdzić?...

Zgłoś jeśli naruszono regulamin